800-819-0559 (座机拨打)  |  400-619-0559 (手机拨打)
回到温度检测技术参考索引首页
View a printer friendly page

温度传感器:优势和劣势

完美的温度传感器:

  • 对所测量的介质没有影响
  • 非常精确
  • 响应即时(在多数情况下)
  • 输出易于调节

不管是哪种类型的传感器,所有温度传感器都要考虑上述因素。

不管测量什么,最重要的是要确保测量设备自身不会影响所测量的介质。进行接触温度测量时,这一点尤为重要。选择正确的传感器尺寸和导线配置是重要的设计考虑因素,以减少"杆效应"及其他测量错误。

将对测量介质的影响降至最低之后,如何准确地测量介质就变得至关重要。准确性涉及传感器的基本特性、测量准确性等。如果未能解决有关"杆效应"的设计问题,再准确的传感器也无济于事。

响应时间受传感器元件质量的影响,还会受到导线的一些影响。传感器越小,响应速度越快。
YSI Temperature利用微珠技术生产出了某些响应最快的商用热敏电阻。

使用微处理器后可以更轻松地调节非线性输出,因此传感器输出的信号调节也更不成问题。YSI 4800Linearizing Circuit允许对热敏电阻的输出实施单组件线性化。

在各采购代理纷纷寻求最廉价的零件之时,工程师们却认识到了传感器"一分钱一分货"的重要性。YSI热敏电阻可为整体设计提供重要价值。

传感器特性
 

NTC热敏电阻

铂RTD

热电偶

半导体

传感器

陶瓷
金属氧化尖晶石

铂绕线式
或金属薄膜

热电

半导体
连接点

温度范围(常规)

-100 ~ +325˚C -200 ~ +650˚C 200 ~ +1750˚C -70 ~ 150˚C

准确性(常规)

0.05 ~ 1.5 ˚C 0.1 ~ 1.0˚C 0.5 ~ 5.0˚C 0.5 ~ 5.0˚C

100˚C时的
长期稳定性

0.2˚C/年(环氧)

0.02˚C/年(玻璃)


0.05˚C/年(薄膜)

0.002˚C/年(电线)

可变,某些类型会随着

年限的变化而变化

>1˚C/年

输出

NTC电阻

-4.4%/˚C(常规)

PTC电阻

0.00385Ω/Ω/°C

热电压

10µV ~ 40µV/°C

数字,各种输出

线性度

指数函数 相当线性 多数类型呈非线性 线性

所需的电源

恒定电压或电流 恒定电压或电流 自供电 4 ~ 30 VDC

响应时间

较快,0.12 ~ 10秒 一般较慢,1 ~ 50秒 较快,0.10 ~ 10秒 较慢,5 ~ 50秒

对电噪声的敏感度

相当不敏感,

仅对高电阻敏感

相当不敏感 敏感/冷端补偿

很大程度上

取决于布局

导线电阻影响

仅低电阻零件

很敏感。

需要三线或四线配置

对短期运行无影响。

需要TC延长线。

不适用

成本

低到中

绕线式——高

薄膜——低

上述每种主要类型的传感器的基本操作理论都有所不同。

每种传感器的温度范围也有所不同。热电偶系列的温度范围最广,跨越多个热电偶类型。

精度取决于基本的传感器特性。所有传感器类型的精度各不相同,不过铂元件和热敏电阻的精度最高。一般而言,精度越高,价格就越高。

长期稳定性由传感器随时间的推移保持其精度的一致程度来决定。稳定性由传感器的基本物理属性决定。高温通常会降低稳定性。铂和玻璃封装的绕线式热敏电阻是最稳定的传感器。热电偶和半导体的稳定性则最差。

传感器输出依照类型而有所变化。热敏电阻的电阻变化与温度成反比,因此具有负温度系数(NTC)。铂等基金属具有正温度系数(PTC)。热电偶的千伏输出较低,并且会随着温度的变化而变化。半导体通常可以调节,附带各种数字信号输出。

线性度定义了传感器的输出在一定的温度范围内一致变化的情况。热敏电阻呈指数级非线性,低温下的灵敏度远远高于高温下的灵敏度。随着微处理器在传感器信号调节电路中的应用越来越广泛,传感器的线性度愈发不成问题。

通电后,热敏电阻和铂元件都需要恒定的电压或电流。功率调节对于控制热敏电阻或铂RTD中的自动加热至关重要。电流调节对于半导体而言不太重要。热电偶会产生电压输出。

响应时间,即传感器指示温度的速度,取决于传感器元件的尺寸和质量(假定不使用预测方法)。半导体的响应速度最慢。绕线式铂元件的响应速度是第二慢的。铂薄膜、热敏电阻和热电偶提供小包装,因此带有高速选件。玻璃微珠是响应速度最快的热敏电阻配置。

会导致温度指示有误的电噪声是使用热电偶时的一个主要问题。在某些情况下,电阻极高的热敏电阻可能是个问题。

导线电阻可能会导致热敏电阻或RTD等电阻式设备内出现错误偏差。使用低电阻设备(例如100Ω铂元件)或低电阻热敏电阻时,这种影响会更加明显。对于铂元件,使用三线或四线导线配置来消除此问题。对于热敏电阻,通常会通过提高电阻值来消除此影响。热电偶必须使用相同材料的延长线和连接器作为导线,否则可能会引发错误。

尽管热电偶是最廉价、应用最广泛的传感器,但NTC热敏电阻的性价比却往往是最高的。

传感器的优势和劣势
  NTC热敏电阻 铂RTD 热电偶 半导体
传感器 陶瓷(金属氧化尖晶石) 铂绕线式或金属薄膜 热电

半导体

连接点

优势
  • • 灵敏度
  • • 精度
  • • 成本
  • • 坚固耐用
  • • 包装灵活
  • • 密封
  • • 表面安装
  • • 精度
  • • 稳定性
  • • 线性度
  • • 温度范围
  • • 自供电
  • • 不会自动加热
  • • 坚固耐用
  • • 易于使用
  • • 板式安装
  • • 坚固耐用
  • • 总成本
劣势
  • • 非线性
  • • 自动加热
  • • 潮湿故障
    (仅对于非玻璃设备)
  • • 导线电阻错误
  • • 响应时间
  • • 抗振
  • • 大小
  • • 包装限制
  • • 冷端补偿
  • • 精度
  • • 稳定性
  • • TC延长线
  • • 精度
  • • 有限的应用
  • • 稳定性
  • • 响应时间

 

每种传感器都有其优势和劣势。热敏电阻的主要优势是:

灵敏度:热敏电阻能随非常微小的温度变化而变化。

精度:热敏电阻能提供很高的绝对精度和误差。

成本:对于热敏电阻的高性能,它的性价比很高。

坚固性:热敏电阻的构造使得它非常坚固耐用。

灵活性:热敏电阻可配置为多种物理形式,包括极小的包装。

密封:玻璃封装为其提供了密封的包装,从而避免因受潮而导致传感器出现故障。

表面安装:提供各种尺寸和电阻容差。

在热敏电阻的劣势中,通常只有自动加热是一个设计考虑因素。必须采取适当措施将感应电流限制在一个足够低的值,以便使自动加热错误降低到一个可接受的值。

非线性问题可通过软件或电路来解决,会引发故障的潮湿问题可通过玻璃封装来解决。

所有传感器都有特定的优势和劣势。要确保项目取得成功,关键是让传感器功能与应用相匹配。如果您在确定热敏电阻是否是最佳设计选件方面需要获得帮助,请联系YSI Temperature应用工程师。

经Measurement Specialties许可复制

回到温度检测技术参考索引首页